
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014 4661

A Family of Optimal Locally Recoverable Codes
Itzhak Tamo, Member, IEEE, and Alexander Barg, Fellow, IEEE

Abstract— A code over a finite alphabet is called locally
recoverable (LRC) if every symbol in the encoding is a function of
a small number (at most r) other symbols. We present a family
of LRC codes that attain the maximum possible value of the
distance for a given locality parameter and code cardinality. The
codewords are obtained as evaluations of specially constructed
polynomials over a finite field, and reduce to a Reed–Solomon
code if the locality parameter r is set to be equal to the code
dimension. The size of the code alphabet for most parameters is
only slightly greater than the code length. The recovery procedure
is performed by polynomial interpolation over r points. We also
construct codes with several disjoint recovering sets for every
symbol. This construction enables the system to conduct several
independent and simultaneous recovery processes of a specific
symbol by accessing different parts of the codeword. This
property enables high availability of frequently accessed data
(“hot data”).

Index Terms— Distributed storage, erasure recovery, evalua-
tion codes, hot data.

I. INTRODUCTION

D ISTRIBUTED and cloud storage systems have reached
such a massive scale that recovery from several failures

is now part of regular operation of the system rather than a
rare exception. In addition, storage systems have to provide
high data availability to ensure high performance. In order
to address these requirements, redundancy and data encoding
must be introduced into the system. The simplest and most
widespread technique used for data recovery is replication,
under which several copies of each data fragment are written to
distinct physical storage nodes. However, this solution entails
large storage overhead and has therefore become inadequate
for modern systems supporting the “Big Data” environment.
Therefore, more advanced coding techniques that provide
comparable resiliency against failures at the expense of a
significantly smaller storage overhead, are implemented. For
example, Facebook uses the (14, 10) Reed-Solomon code,
which requires only 40% overhead compared to the 200%
overhead associated with threefold replication.

Although today’s storage systems are resilient to several
concurrent node failures, in order to provide enough data
reliability, by far the most common scenario is a failure of
a single node. Hence, a storage system should be designed
to efficiently repair such scenarios. The repair efficiency of
a single node failure in the system can be quantified under

Manuscript received October 10, 2013; revised February 6, 2014; accepted
April 18, 2014. Date of publication May 23, 2014, date of current version
July 10, 2014.

The authors’ emails are zactamo@gmail.com and alexanderbarg@
gmail.com. Provisional U.S. patent application 61/884,768 filed.

Communicated by H. Pfister, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2014.2321280

different metrics, where each metric is relevant for different
storage systems and applications. More precisely, a large body
of existing work has considered the repair problem under three
metrics: i) the number of bits communicated in the network,
i.e., the repair-bandwidth [5], [6], [18], [22], [25], [27],
ii), the number of bits read, the disk-I/O [13], [27], and
iii), repair locality, i.e., the number of nodes that participate in
the repair process [9], [16], [19], [24], [26]. The fundamental
limits of these metrics are yet to be fully understood. In this
work, we focus on the last of these metrics, namely the repair
locality.

More formally, a Locally Recoverable Code (LRC code) of
length n is a code that produces an n-symbol codeword from
k information symbols and, for any symbol of the codeword,
there exist at most r other symbols such that the value of
the symbol can be recovered from them. We refer to such a
code as an (n, k, r) LRC code. For LRC codes, if a symbol
is lost due to a node failure, its value can be recovered by
accessing the value of at most r other symbols. For example,
a code of length 2k in which each coordinate is repeated twice,
is an LRC code with locality r = 1. Generally the locality
parameter satisfies 1 ≤ r ≤ k because the entire codeword
can be found by accessing k symbols other than the erased
symbol. Another example is given by (n, k) maximum distance
separable, or MDS codes. In this case the locality is r = k, and
not less than that, which is the largest possible value. Observe
that MDS codes can recover the largest possible number of
erased symbols among all (n, k) codes, but they are far from
optimal in terms of locality, i.e., for correcting a single symbol
erasure. Yet another simple example is provided by regular
LDPC codes with r + 1 nonzeros in every check equation,
meaning that any single symbol of the codeword is a linear
combination of some other r symbols.

Codes that have good locality properties were initially
studied in [10] and [11], although the second of these papers
considered a slightly different definition of locality, under
which a code is said to have information locality r if the
value of any of its information symbols can be recovered
by accessing at most r other codeword symbols. Codes with
information locality property were also studied in [7] and [9].
A natural question to ask is as follows: given an (n, k, r) LRC
code C, what is the best possible minimum distance d(C)?
A bound on d(C) as a function of n, k and r was proved
in [9] by extending the arguments in the proof of the classical
Singleton bound on codes (see Theorem 2.1 below). Using
a probabilistic argument, [9] showed that this bound is tight
over a large enough finite field. Therefore, an (n, k, r) LRC
code that achieves the bound of [9] with equality is called
an optimal LRC code. The Singleton-type bound of [9] does

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4662 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

not take into account the cardinality of the code alphabet q .
Augmenting this result, a recent work [4] established a bound
on the distance of LRC codes that depends on q , sometimes
yielding better results. Another perspective of the limits for
LRC codes was addressed in [15] which showed that locality
cannot be too small if the codes are required to attain capacity
of, say, the binary symmetric channel. We note that locality
enables one to recover from a single failure with only r reads
and thus offers a significant speedup in the most common
scenario.

There are two constructions of optimal LRC codes known in
the literature. Namely, [24] proposed a two-level construction
based on the well-known Gabidulin codes combined with a
single parity-check (r +1, r) code. Another construction [26]
used two layers of MDS codes, a Reed-Solomon code and
a special (r + 1, r) MDS code. A common shortcoming of
these constructions relates to the size of the code alphabet
which in both papers is an exponential function of the code
length, complicating the implementation. The only known
constructions of optimal LRC codes over an alphabet of size
comparable to code’s length are for locality r = 1, k, and
recently paper [21] constructed such a code for a specific value
of the length n = � k

r �(r + 1). In this paper we overcome
this shortcoming, presenting a natural generalization of the
Reed-Solomon construction which relies on the alphabet of
cardinality comparable to the code length n. Our construction
can also be viewed in the framework of codes constructed
using the Chinese Remainder Theorem; see Sect. V-B.

Recently [17] constructed LRC codes with several disjoint
repair alternatives using partial geometries. [23] presented a
new framework for designing distributed storage codes that
are efficient in data read and download required during repair,
and [12] presented codes that combine two metrics related to
storage, namely codes with local recovery that at the same
time seek to minimize the repair bandwidth during repair of
a failed node.

A related locality property, introduced in [3] and [8],
is called maximally recoverable codes. Symbols in such codes
can be grouped into disjoint sets of size r+1 that form a simple
parity check code. Moreover, puncturing each codeword on
one coordinate from each group yields an MDS code. Hence
the value of each symbol in such codes can be recovered by
a simple parity check sum of r other symbols.

Overview of the paper: The main construction of optimal
(n, k, r) LRC codes over the finite field Fq , q ≥ n is presented
in Section III. There are several versions of the construction
that are discussed in detail, together with some examples of
short optimal LRC codes. We also observe that the encoding
can be made systematic, which may be beneficial in imple-
mentations. In Section IV we give two constructions of LRC
codes with multiple disjoint recovering sets for each symbol,
which enables simultaneous recovery from different portions
of the encoding. In Section V we discuss several extensions
of the main construction, in particular, pointing out that the
simplifying assumptions made earlier in the paper can be
removed with only small changes in the resulting codes.

Throughout the paper, C denotes a code over a finite
field Fq . The triple of parameters (n, k, r) refers to a code

of length n, cardinality qk and locality r . The finite field is
also denoted by F if its cardinality is understood or does
not matter. We also use the notation [n] := {1, . . . , n}.
A restriction CI of the code C to a subset of coordinates
I ⊂ [n] is the code obtained by removing from each vector
the coordinates outside I.

II. PRELIMINARIES ON LRC CODES

We say that a code C ⊂ F
n
q has locality r if every symbol

of the codeword x ∈ C can be recovered from a subset of
r other symbols of x (i.e., is a function of some other r
symbols xi1 , xi2 , . . . , xir). In other words, this means that,
given x ∈ C, i ∈ [n], there exists a subset of coordinates
Ii ⊂ [n]\i, |Ii | ≤ r such that the restriction of C to the
coordinates in Ii enables one to find the value of xi . The
subset Ii is called a recovering set for the symbol xi .

The formal definition is as follows. Given a ∈ Fq consider
the sets of codewords

C(i, a) = {x ∈ C : xi = a}, i ∈ [n].
The code C is said to have locality r if for every i ∈ [n] there
exists a subset Ii ⊂ [n]\i, |Ii | ≤ r such that the restrictions
of the sets C(i, a) to the coordinates in Ii for different a are
disjoint:

CIi (i, a) ∩ CIi (i, a′) = ∅, a �= a′.

The code CIi ∪{i} is called a local code of the code C. In the
constructions of LRC codes presented in the literature the set
of coordinates of the (n, k, r) LRC code is usually partitioned
into (r +1, r) local MDS codes that define the recovering sets
of the symbols.

Two desirable features of codes are large minimum distance
and high rate. We begin with two bounds on these parameters
of an LRC code. The proof of the following theorem is given
in the appendix.

Theorem 2.1: Let C be an (n, k, r) LRC code of cardinality
qk over an alphabet of size q , then:
The rate of C satisfies

k

n
≤ r

r + 1
. (1)

The minimum distance of C satisfies

d ≤ n − k −
⌈

k

r

⌉
+ 2. (2)

A code that achieves the bound on the distance with equality
will be called an optimal LRC code.

Remark: The bound on the distance is due to [9], [20],
where it appears with a different proof.

It is clear that in any code, each symbol has locality at
most k, so r always satisfies 1 ≤ r ≤ k. Upon letting r = k,
(2) becomes the well-known Singleton bound,

d ≤ n − k + 1, (3)

so optimal LRC codes with r = k are precisely MDS codes,
e.g. the Reed-Solomon codes. On the other hand, if r = 1,
the bound (2) becomes

d ≤ n − 2k + 2 = 2
(n

2
− k + 1

)
.

TAMO AND BARG: FAMILY OF OPTIMAL LRC CODES 4663

Replicating each symbol twice in an (n/2, k) MDS code, we
obtain an optimal LRC code with locality r = 1.

III. CODE CONSTRUCTION

In this section we construct optimal linear (n, k, r) LRC
codes over a finite field alphabet of size q, where q is a
prime power greater or equal to n. In the first version of the
construction we assume that k is divisible by r (this restriction
will be removed later in this section). Throughout this section
we also assume that n is divisible by r + 1 (this restriction
can also be lifted, see Sect. V-A).

A. General Construction

We begin with a general method of constructing linear codes
with the locality property. Later we will show that some of
these codes have optimal minimal distance. The codes are
constructed as evaluations of polynomials, in line with many
other algebraic code constructions. Unlike the classical Reed-
Solomon codes, the new codes will be evaluated at a specially
chosen set of points of the field Fq, q ≥ n. A key ingredient
of the construction is a polynomial g(x) ∈ Fq [x] that satisfies
the following conditions:

1) The degree of g is r + 1,
2) There exists a partition A = {A1, . . . , A n

r+1
} of a set

A ⊆ Fq of size n into sets of size r + 1, such that g is
constant on each set Ai in the partition. Namely for all
i = 1, . . . , n/(r + 1), and any α, β ∈ Ai ,

g(α) = g(β).

A polynomial that satisfies these conditions will be called
good. The code construction presented below relies on the
existence of good polynomials.

Construction 1 ((n, k, r) LRC codes) : Let n ≤ q be the
target code length. Let A ⊂ Fq , |A| = n and let g(x) be
a good polynomial for the partition A of the set A. To find
the codeword for a message vector a ∈ F

k
q write it as a =

(ai j , i = 0, . . . , r − 1; j = 0, . . . , k
r − 1). Define the encoding

polynomial

fa(x) =
r−1∑
i=0

fi (x)xi , (4)

where

fi (x) =
k
r −1∑
j=0

ai j g(x) j , i = 0, . . . , r − 1 (5)

(we call the fi ’s the coefficient polynomials). The codeword
for a is found as the evaluation vector of fa at all the points
of A. In other words, the (n, k, r) LRC code C is defined as
the set of n-dimensional vectors

C = {(fa(α), α ∈ A) : a ∈ F
k
q}. (6)

We call the elements of the set A locations and the elements
of the vector (fa(α)) symbols of the codeword.

The local recovery is accomplished as follows.

Recovery of the Erased Symbol: Suppose that the erased
symbol corresponds to the location α ∈ A j , where A j is one
of the sets in the partition A. Let (cβ, β ∈ A j\α) denote the
remaining r symbols in the locations of the set A j . To find the
value cα = fa(α), find the unique polynomial δ(x) of degree
less than r such that δ(β) = cβ for all β ∈ A j\α, i.e.,

δ(x) =
∑

β∈A j \α
cβ

∏
β ′∈A j \{α,β}

x − β ′

β − β ′ (7)

and set cα = δ(α). We call δ(x) the decoding polynomial
for the symbol cα. Thus, to find one erased symbol, we need
to perform polynomial interpolation from r known symbols
in its recovery set. This recovery procedure underlies all the
constructions in this paper.

In the next theorem we prove that the codes constructed
above are optimal with respect to the bound (2), and justify
the validity of the recovery procedure.

Theorem 3.1: The linear code C defined in (6) has dimen-
sion k and is an optimal (n, k, r) LRC code, namely its
minimum distance meets the bound (2) with equality.

Proof: Note that for i = 0, . . . , r − 1; j = 0, . . . , k
r − 1

the k polynomials g(x) j x i all are of distinct degrees, and
therefore are linearly independent over F. In other words, the
mapping a �→ fa(x) is injective. By (4), (5) the degree of the
polynomial fa(x) is at most(k

r
− 1

)
(r + 1) + r − 1 = k + k

r
− 2 ≤ n − 2,

where the last inequality follows from (1). This means that
two distinct encoding polynomials fa and fb give rise to two
distinct codevectors, so the dimension of the code is k. Since
the encoding is linear, the distance satisfies

d(C) ≥ n − max
fa,a∈Fk

q

deg(fa) = n − k − k

r
+ 2

which together with (2) completes the proof of distance
optimality.

Let us prove the locality property. Let A j be a member
of the partition A and assume that the lost symbol of the
codeword equals cα = fa(α), where α ∈ A j is a field element.
Define the decoding polynomial

∂(x) =
r−1∑
i=0

fi (α)xi , (8)

where the fi (x) are the coefficient polynomials (5). We will
show that ∂(x) is the same polynomial as δ(x) defined in (7).
Each fi (x) is a linear combination of powers of g, therefore
it is also constant on the set A j , i.e., for any β ∈ A j and any
coefficient polynomial fi , i = 1, . . . , r − 1

fi (β) = fi (α). (9)

Hence by (8) and (9), for any β in A j

∂(β) =
r−1∑
i=0

fi (α)β i =
r−1∑
i=0

fi (β)β i = fa(β).

In other words, the values of the encoding polynomial fa(x)
and the decoding polynomial ∂(x) on the locations of A j

4664 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

coincide. Since ∂(x) is of degree at most r − 1, it can be
interpolated from the r symbols cβ, β ∈ A j\α, see Eq. (7).
Once ∂(x) is computed, we find the lost symbol as ∂(α).
To conclude, the lost symbol cα can be recovered by accessing
r other symbols of the codeword.

As a consequence of this proof, we note that the polynomial
δ(x) satisfies the condition δ(α) = fa(α) for all α ∈ A j , i.e., it
is determined by the index j of the recovering set A j . In other
words, the decoding polynomial δ(x) is the same for any two
symbols α1, α2 ∈ A j .

Example 1: In this example we construct an optimal
(n = 9, k = 4, r = 2) LRC code over the field Fq . Since
we need 9 distinct evaluation points of the field, we must
choose q ≥ 9. We define the code C over F13.

The difficulty of using Construction 1 is in constructing
a good polynomial g of degree r + 1 = 3 that is constant
on 3 disjoint sets of size 3. In this example we offer little
motivation in constructing g(x) but later we will give a
systematic way of constructing them.

Let the partition A be as follows:

A = {A1 = {1, 3, 9}, A2 = {2, 6, 5}, A3 = {4, 12, 10}},
and note that the polynomial g(x) = x3 is constant on the
sets Ai . Let a = (a0,0, a0,1, a1,0, a1,1) be the information
vector of length k = 4 over F13 and define the encoding
polynomial by (4), (5)

fa(x) = (a0,0 + a0,1g(x)) + x(a1,0 + a1,1g(x))

= (a0,0 + a0,1x3) + x(a1,0 + a1,1x3)

= a0,0 + a1,0x + a0,1x3 + a1,1x4.

The codeword c that corresponds to a is found as the eval-
uation of the polynomial fa at all the points of the sets of
the partition A: c = (fa(α), α ∈ ∪3

i=1 Ai). Since deg fa ≤ 4,
the minimum distance is at least 5, and so d = 5 by (2). For
instance, assume that a = (1, 1, 1, 1), then the codeword is
found to be

(fa(1), fa(3), fa(9), fa(2), fa(6), fa(5), fa(4), fa(12), fa(10))

= (4, 8, 7, 1, 11, 2, 0, 0, 0).

Suppose that the value fa(1) is erased. By our construction,
it can be recovered by accessing 2 other codeword symbols,
namely, the symbols at locations corresponding to 3 and 9.
Using (7) we find δ(x) = 2x + 2 and compute δ(1) = 4,
which is the required value.

Remarks:
1) Construction 1 is a direct extension of the classical

Reed-Solomon codes in that both are evaluations of
some polynomials defined by the message vector. Our
construction also reduces to Reed-Solomon codes if r is
taken to be k. Note that if r = k then each coefficient
polynomial (5) is a constant, and therefore the code
construction does not require a good polynomial. For the
same reason, the set A for RS codes can be an arbitrary
subset of Fq , while the locality condition for r < k
imposes a restriction on the choice of the locations.

2) Note that if the coordinates of the vector a are indexed
as a = (a0, . . . , ak−1) then the encoding polynomial

in (4) can be also written as

fa(x) =
k+ k

r −2∑
m=0

m �=r mod(r+1)

am g(x)�
m

r+1 �xm mod(r+1). (10)

To see this, put in (5) am = ai+ j (r+1), i = 0, . . . , r − 1;
j = 0, . . . , k

r −1, and observe that � k+ k
r −2

r+1 � = k
r −1, and

that there are k/r − 1 numbers in the set {0, 1, . . . , k +
(k/r) − 2} equal to r modulo r + 1.

3) In Construction 1 we assumed that r divides k; however,
this constraint can be easily lifted. Indeed, suppose that
r does not divide k and define the coefficient polynomial
fi in (5) as follows:

fi (x) =
s(k,r,i)∑

j=0

ai j g(x) j , i = 0, 1, . . . , r − 1,

where

s(k, r, i) =
{

� k
r � i < k mod r

� k
r � − 1 i ≥ k mod r.

It is easy to see that the r coefficient polynomials are
defined by the k information symbols, and the resulting
encoding polynomial fa has degree at most k+�k/r�−2.
The remaining parts of the construction are unchanged.

B. Constructing Optimal LRC Codes Using Algebraic
Structure of the Field

The main component of Construction 1 is finding a good
polynomial g(x) together with the corresponding partition of
the subset A of the field. In this section we show how to
construct g(x) using the multiplicative and additive groups
of Fq .

The multiplicative group F
∗
q is cyclic, and the additive group

F
+
q is isomorphic to a direct product of l copies of the additive

group Z
+
p , where q = pl and p is the characteristic of the

field. The following obvious proposition constructs a good
polynomial from any subgroup of F

∗
q or F

+
q .

Proposition 3.2: Let H be a subgroup of F
∗
q or F

+
q . The

annihilator polynomial of the subgroup

g(x) =
∏
h∈H

(x − h) (11)

is constant on each coset of H .
Proof: Assume that H is a multiplicative subgroup and

let a, ah be two elements of the coset a H , where h ∈ H , then

g(ah) =
∏
h∈H

(ah − h) = h
|H | ∏

h∈H

(a − hh
−1

)

=
∏
h∈H

(a − h)

= g(a).

The proof for additive subgroups is completely analogous.
Remark. If H is a multiplicative subgroup of F

∗
q , then g(x)

in (11) can be written as g(x) = x |H | − 1. Equivalently, we
can take g(x) = x |H |.

TAMO AND BARG: FAMILY OF OPTIMAL LRC CODES 4665

Thus annihilators of subgroups form a class of good polyno-
mials that can be used to construct optimal codes. The partition
A is a union of cosets of H , so the code length n can be any
multiple of r + 1 satisfying n ≤ q − 1 (or n ≤ q in the case
of the additive group). Since the size of the subgroup divides
the size of the group we get that q mod (r + 1) is 1 (or 0).

The parameters of LRC codes constructed using subgroups
are naturally restricted by the possible size of the subgroups.
Note that Example 1 is constructed using the multiplicative
subgroup H = {1, 3, 9} of the field F13, and the annihilator
is g(x) = x3 − 1. In the example we used another good
polynomial, g(x) = x3.

Example 2: In this example we construct an optimal
(12, 6, 3) LRC code with minimum distance d = 6 over F13.
Note that 5 is an (r + 1) = 4-th root of unity modulo 13,
therefore the polynomial g(x) = x4 is constant on the cosets
of the cyclic group H = {1, 5, 12, 8} generated by 5. Note
that the polynomial g constructed in Proposition 3.2 is in fact
g(x) = x4 − 1, while we use the polynomial g(x) = x4.
Since the polynomials 1, x4 − 1 span the same subspace as
the polynomials 1, x4, the resulting codes are equivalent.

The group H gives rise to the partition of F
∗
13

A =
{

A1 = {1, 5, 12, 8}, A2 = {2, 10, 11, 3},
A3 = {4, 7, 9, 6}

}
.

For the information vector (a0, a1, a2, a4, a5, a6) define the
encoding polynomial (10)

fa(x) =
6∑

i=0
i �=3

ai x
i = f0(x) + f1(x)x + f2(x)x2

with coefficient polynomials equal to

f0(x) = a0 + a4x4, f1(x) = a1 + a5x4, f2(x) = a2 + a6x4.

The corresponding codeword is obtained by evaluating fa(x)
for all the points x ∈ F

∗
13.

Example 3: In this example we construct an optimal LRC
code using the additive group of the field. Let α be a primitive
element of the field F24 and take the additive subgroup H =
{x + yα : x, y ∈ F2}. The polynomial g(x) in (11) equals

g(x) = x(x + 1)(x + α)(x + α + 1)

= x4 + (α2 + α + 1)x2 + (α2 + α)x .

We will construct an optimal (12, 6, 3) LRC code with
distance d = 6. For i = 0, 1, 2 define the coefficient
polynomials

fi (x) = ai,0 + ai,1g(x),

using the information vector a = (ai, j) and i = 0, 1, 2,
j = 0, 1. The subgroup H is of order 4, hence in order to
have 12 evaluation points, we choose any 3 cosets of H out
of its 4 cosets, and evaluate the encoding polynomial

fa(x) = f2(x)x2 + f1(x)x + f0(x)

at the elements of these cosets. Theorem 3.1 implies that the
resulting code has the claimed properties. Comparing this code

with a (12, 6) MDS code, we note that both codes can be
defined over F24 , however by reducing the minimum distance
from 7 to 6 we managed to reduce the locality by a factor of
two, from 6 to 3.

The additive and the multiplicative structures of the field
can be combined into a more general method of constructing
good polynomials. For two subsets H, G ⊂ Fq , we say that H
is closed under multiplication by G, if multiplying elements
of H by elements of G does not take the result outside H ,
i.e., if {hg : h ∈ H, g ∈ G} ⊆ H .

Theorem 3.3: Let l, s, m be integers such that l divides s,
pl modm = 1, and p is a prime. Let H be an additive
subgroup of the field Fps that is closed under the multiplication
by the field Fpl , and let α1, . . . , αm be the m-th degree roots
of unity in Fps . Then for any b ∈ Fps the polynomial

g(x) =
m∏

i=1

∏
h∈H

(x + h + αi) (12)

is constant on the union of cosets of H , ∪1≤i≤m H + bαi , and
the size of this union satisfies

| ∪1≤i≤m H + bαi | =
{

|H | if b ∈ H

m|H | if b /∈ H.

Proof: Let h ∈ H and let h +bα j be an arbitrary element,
then

g(h + bα j) =
m∏

i=1

∏
h∈H

(h + bα j + h + αi)

=
m∏

i=1

∏
h∈H

(bα j + h + αi)

= α
−m|H |
j

m∏
i=1

∏
h∈H

(b + hα−1
j + αiα

−1
j)

=
m∏

i=1

∏
h∈H

(b + hα−1
j + αi)

=
m∏

i=1

∏
h∈H

(b + h + αi)

= g(b),

where we have made changes of the variables and used the
assumption that H is closed under multiplication by any m-th
degree root of unity, since it is closed multiplication by Fpl .
For the last part regarding the size of the union of the cosets,
consider two distinct m-th roots of unity αi , α j , then

H + bαi = H + bα j ⇔ b(αi − α j) ∈ H ⇔ b ∈ H,

where the last step follows since αi −α j is a nonzero element
of Fpl and H closed under multiplication by the elements
of Fpl .

Remarks:

1) In order to construct a good polynomial using
Theorem 3.3, one needs to find an additive subgroup
H of Fps that is closed under multiplication by Fpl .
Note that since l divides s, the field Fps can be viewed
as a vector space of dimension s/ l over the field Fpl .

4666 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Therefore any subspace H of dimension 1 ≤ t ≤ s/ l
is in fact an additive subgroup of the field Fps that
is closed under multiplication by Fpl , and is of size
|H | = (pl)t = ptl .

2) Since the degree of the polynomial g(x) in (12) is m|H |,
it is clear that it takes distinct values on different sets of
the form U = ∪i H +bαi . In other words, g(x) partitions
Fps into (ps − |H |)/m|H | sets of size m|H | and one
set of size |H |, according to the values taken on the
elements of the field. Hence, over the field of size ps ,
one can construct an optimal LRC code of length n ≤ ps

such that m|H | divides n.

Assume that one wants to construct an LRC code over
a field of a specific characteristic p, e.g., p = 2, then
Theorem 3.3 gives a flexible method of constructing good
polynomials for a large set of parameters. More specifically,
let m be an integer not divisible by p, and let l be the smallest
integer such that plmodm = 1 (note that l ≤ φ(m), where φ(·)
is Euler’s totient function). Then is it possible to construct a
good polynomial that is constant on sets of size mpt for any
integer t which is a multiple of l.

Example 4: Suppose that p = 7 and the code parameters
are (n = 28, r = 13). To construct an optimal LRC code
we need to construct a polynomial g(x) that is constant on
two disjoint sets of size r + 1 = 14 over some extension
of F7. Write 14 = 2 · 7 then m = 2, l = 1, moreover, using
Theorem 3.3 one can construct the desired good polynomial
over the field F72 . More precisely, following Remark (2)
above, the polynomial g(x) partitions the field of size 49 into
3 sets of size 14 and one set of size 7. Hence in order to
construct a code of length n = 28 one can choose any two
out of the three sets of size 14. Note that the dimension of the
code can take any value k ≤ nr/(r + 1) = 26.

Let us summarize the constructions of good polynomials
depending on the value of the parameters. Suppose that
we would like to construct a good polynomial over a field
extension of Fp that is constant on disjoint subsets of points
of size mpt , where m and p are coprime, then

1) If t = 0, one can use multiplicative subgroups of some
field extension Fpl that satisfies pl mod m = 1;

2) If t > 0 and m = 1, one can rely on additive subgroups;
3) If t, m > 1 and t is a multiple of l, where l is the smallest

integer such that pl mod m = 1, the construction is
accomplished by combining the additive and multiplica-
tive structures of the field as in Theorem 3.3.

There is one case where we are not able to construct
good polynomials. For example, using the technique discussed
above it is not possible to construct a code with locality r = 5
over any extension of the field F2. This follows since the size
of the set is r + 1 = 5 + 1 = 3 · 2, hence m = 3 and
l = 2 is the smallest integer such that 2l mod 3 = 1, however
t = 1 is not a multiple of l = 2. On the other hand, a simple
counting argument shows that good polynomials exist also for
this unresolved case if the field Fq is large enough.

Proposition 3.4: Let Fq be the finite field of size q . There
exists a good polynomial of degree r + 1 that is constant on
at least �(q

r+1

)
/qr� sets of size r + 1.

Proof: Consider the set Mq,r = { f ∈ Fq [x] : f =∏r+1
i=1 (x −αi)}, where αi , i = 1, . . . , r + 1 vary over all

(q
r+1

)
possible choices of subsets of the field of size r + 1. In other
words, Mq,r is the set of all monic polynomials of degree r +1
in Fq [x] that also have r + 1 distinct zeros in Fq . We say that
two polynomials f (x) = xr+1 + ∑r

i=0 ai x i , g(x) ∈ Mq,r ,
are equivalent if they differ by a constant. Clearly this is an
equivalence relation on Mq,r , and the number of equivalence
classes is at most qr according to the number of choices
of r -tuples of the coefficients a1, . . . , ar . Hence there exists
an equivalence class of size at least �(q

r+1

)
/qr�. Let f be a

representative of this class, and note that it is constant on the
set of zeros of any other polynomial g from this class. We
conclude that f is a good polynomial that is constant on sets
of size r +1, and the number of sets is at least �(q

r+1

)
/qr�.

When q is large enough, e.g., q > n(r + 1)r , the quantity
�(q

r+1

)
/qr� exceeds n/(r + 1) which is the desired number

of sets for the construction. For instance, taking q = 211,
we observe that there exists a polynomial g ∈ Fq[x] of degree
r + 1 = 6 that is constant on at least 3 disjoint sets of size 6.

Indeed, we find that (211
6)

(211)5 ≈ 2.82. Using Construction 1 and
the polynomial g, we can construct an optimal LRC code over
Fq of length n = 18, locality r = 5 and any dimension k ≤ 15.

C. A General View of the LRC Code Family

In this section we study the mapping from the set of
polynomials of the form (4) to F

n , generalizing the code
construction presented above.

Let A ⊂ F, and let A be a partition of A into m sets Ai .
Consider the set of polynomials FA[x] of degree less than |A|
that are constant on the blocks of the partition:

FA[x] = { f ∈ F[x] :
f is constant on Ai , i = 1, . . . , m; deg f < |A|}. (13)

The annihilator of A is the smallest-degree monic
polynomial h such that h(a) = 0 if a ∈ A, i.e., h(x) =∏

a∈A(x − a). Observe that the set FA[x] with the usual
addition and multiplication modulo h(x) becomes a commu-
tative algebra with identity. Since the polynomials FA[x] are
constant on the sets of A, we write f (Ai) to refer to the value
of the polynomial f on the set Ai ∈ A. We will also use a
short notation for multiplication of polynomials, writing f g
instead of f g mod h.

The next proposition lists some properties of the algebra.
Proposition 3.5: 1) Let f ∈ FA[x] be a nonconstant

polynomial, then maxi |Ai | ≤ deg(f) < |A|;
2) The dimension dim(FA[x]) = m, and the m polynomi-

als f1, . . . , fm that satisfy fi (A j) = δi, j and deg(fi) <
|A|, form a basis (here δi, j is the Kronecker delta).
Explicitly,

fi (x) =
∑
a∈Ai

∏
b∈A\a

x − b

a − b
. (14)

3) Let α1, . . . , αm be distinct nonzero elements of F, and
let g be the polynomial of degree deg(g) < |A| that

TAMO AND BARG: FAMILY OF OPTIMAL LRC CODES 4667

satisfies g(Ai) = αi for all i = 1, . . . , m, i.e.,

g(x) =
m∑

i=1

αi

∑
a∈Ai

∏
b∈A\a

x − b

a − b
.

Then the polynomials 1, g, . . . , gm−1 form a basis of
FA[x].

4) There exist m integers 0 = d0 < d1 < ... < dm−1 < |A|
such that the degree of each polynomial in FA[x] is di

for some i .
Proof:

(1) For a polynomial f ∈ FA[x], and a set Ai ∈ A, the
polynomial f (x) − f (Ai) has at least |Ai | zeros in F, and
therefore deg(f) ≥ |Ai |.

(2) The m polynomials f1, . . . , fm defined in (14) are
clearly linearly independent since if for some λi ’s in the field,

m∑
i=1

λi fi (x) = 0,

then for any j = 1, . . . , m

m∑
i=1

λi fi (A j) =
m∑

i=1

λiδi, j = λ j = 0.

By definition, the polynomials f1, . . . , fm span FA[x].
(3) Because of part (2) it is sufficient to show that the

polynomials 1, g, . . . , gm−1 are linearly independent. Assume
that for some β j ’s in F,

m∑
j=1

β j g j−1(x) = 0. (15)

Define the m ×m matrix V = (vi, j) where vi, j = (g j−1(Ai)).
From (15) we conclude that V · (β1, . . . , βm)T = 0, however
V is a Vandermonde matrix defined by m distinct nonzero
elements of the field, therefore it is invertible, and βi = 0 for
all i .

(4) Let f0, . . . , fm−1 be a basis for the algebra FA[x].
W.l.o.g. we can assume that the degrees of the polynomials
are all distinct, since if this is not the case, one can easily
find such basis by using linear operations on the fi ’s. For
this, consider an m × |A| matrix whose rows are formed by
the coefficient vectors of the polynomials fi . The rows of
the reduced row-echelon form of this matrix correspond to a
basis of polynomials of distinct degrees. Let di = deg(fi),
and assume that d0 < d1 < · · · < dm−1. Since the constant
polynomials are contained in the algebra, d0 = 0, and the
result follows.

Next we consider a special case of an algebra generated by a
set A of size n, assuming that the partition satisfies |Ai | = r+1
for all i.

Corollary 3.6: Assume that d1 = r +1, namely there exists
a polynomial g in FA[x] of degree r + 1, then di = i(r + 1)
for all i = 0, . . . , m − 1, and the polynomials 1, g, . . . , gm−1

defined in Proposition 3.5 part (3), form a basis for FA[x].
Proof: If there exists such a polynomial g, then clearly

it takes distinct values on distinct sets of the partition A.
Otherwise for some constant c ∈ F, the polynomial g − c

has at least 2(r + 1) roots, and is of degree r + 1, which is a
contradiction. Hence, by Proposition 3.5, part (3) the powers
of g form a basis of the algebra, and the result follows.

Note that the algebra FA[x] in Construction 1 contains a
good polynomial of degree r +1, satisfying the assumptions of
Corollary 3.6, and therefore FA[x] is generated by the powers
of this polynomial.

Next let us use the properties of the algebra of polynomials
defined by the partition A to construct (n, k, r) LRC codes.

Construction 2: Let A ⊂ F, |A| = n and let A be a
partition of the set A into m = n

r+1 sets of size r + 1. Let �

be an injective mapping from F
k to the space of polynomials

Fr
A = ⊕r−1

i=0 FA[x]xi .

(Note that Fr
A is indeed a direct sum of the spaces, so

dim(Fr
A) = mr. Therefore such an injective mapping exists

iff k ≤ mr = nr/(r + 1)).
The mapping � sends the set of messages F

k to a set of
encoding polynomials. We construct a code by evaluating the
polynomials f ∈ �(Fk) at the points of A. If � is a linear
mapping, then the resulting code is also linear.
This construction relies on an arbitrary mapping
� : F

k → Fr
A. It forms a generalization of Construction 1

which used a particular linear mapping for the same purpose.
Below we write fa(x) := �(a).
Theorem 3.7: Construction 2 gives an (n, k, r) LRC code

with minimum distance d satisfying

d ≥ n − max
a,b∈Fk

deg(fa − fb) ≥ n − max
a∈Fk

deg(fa). (16)

Proof: To prove local recoverability, we basically repeat
the proof of Theorem 3.1. For a given message vector a let

fa(x) =
r−1∑
i=0

fi (x)xi , (17)

where the coefficient polynomials fi (x) satisfy fi ∈ FA[x].
Choose j ∈ {1. . . . , m} and suppose that the symbol to be
recovered is fa(α), where α ∈ A j . Define the decoding
polynomial

δ(x) =
r−1∑
i=0

fi (α)xi (18)

and note that δ(α) = fa(α) on account of (17), (18). Since
fi belongs to FA[x], for any β in A j we have fa(β) = δ(β).
Moreover, since δ(x) is of degree at most r − 1, it can be
interpolated by accessing the r values of fa(β) = δ(β) for β
in A j\α. We conclude that the value of the lost symbol fa(α)
can be found by accessing the remaining r symbols in the
block A j .

It remains to prove (16). Let (fa(α))α∈A, (fb(α))α∈A be
two codewords constructed from distinct message vectors a
and b. Since � is injective and deg(fa − fb) < n, the code
vectors that correspond to fa and fb are distinct. Then (16)
is immediate.

D. Systematic Encoding of LRC Codes

In implementations it is preferable to have a systematic form
of LRC codes in order to easily retrieve the stored information.

4668 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

We note that all the constructions described above can be
modified to yield systematic codes with no loss in the code
distance, by modifying the encoding polynomials (4), (17).
In particular Construction 1 can be modified to give optimal
LRC codes in a systematic form. Such a modification is briefly
described in this section.

Let A = {A1, . . . , Am}, m = n/(r +1) be a partition of the
set A ⊆ F of size n into sets of size r + 1. For i = 1, . . . , k/r
let Bi = {βi,1, . . . , βi,r } be some subset of Ai of size r . In
our systematic encoding the message symbols will be written
in the coordinates with locations in the sets Bi .

Recall that the algebra FA[x] has a basis of polynomials fi

that satisfy fi (A j) = δi, j for i, j = 1, . . . , m (14). For each
set Bi define r polynomials φi, j , j = 1, . . . , r of degree less
than r such that

φi, j (βi,l) = δ j,l .

These polynomials can be easily found using Lagrange’s
interpolation. For k information symbols a = (ai, j),
i = 1, . . . , k/r; j = 1, . . . , r define the encoding polynomial

fa(x) =
k/r∑
i=1

fi (x)
(r∑

j=1

ai, j φi, j (x)
)
. (19)

The encoding of the message a is defined by computing
the vector (fa(α), α ∈ A), see (6). It is easily verified that
fa ∈ Fr

A, so each symbol has locality r . Furthermore,
by definition we have

fa(βi, j) = ai, j , i = 1, . . . , k/r; j = 1, . . . , r,

so the code is indeed systematic.
Although (19) gives a systematic (n, k, r) LRC code, opti-

mality of the minimum distance is generally not guaranteed.
This follows since the best bound on the degree of the
encoding polynomial fa(x) is deg(fa) < n. If the algebra
FA[x] is generated by the powers of a good polynomial g
(see Proposition 3.5, part (3)) then it is possible to construct
an optimal systematic LRC code. Indeed, one has to replace
each polynomial fi in (19) with the polynomial fi that is a
linear combination of the polynomials 1, g, . . . , g(k/r)−1 and
satisfies fi (A j) = δi, j for all j = 1, . . . , k/r. This is possible
since the matrix V = (g j−1(Ai)) is a Vandermonde matrix
and thus invertible. Clearly the degree of each fi is at most
((k/r) − 1)(r + 1). Therefore the degree of fa(x) is at most
k + (k/r) − 2, and optimality of the distance follows.

IV. LRC CODES WITH MULTIPLE RECOVERING SETS

In this section we extend the original local recoverability
problem in one more direction, requiring each symbol to have
more than one recovering set of r symbols. Having in mind
the applied nature of the problem, we will assume that the
different recovering sets for the given symbol are disjoint.
Indeed, in distributed storage applications there are subsets
of the data that are accessed more often than the remaining
contents (they are termed “hot data”). In the case that such
segments are accessed simultaneously by many users of the
system, the disjointness property ensures that multiple read
requests can be satisfied concurrently and with no delays.

Let us give a formal definition. Let F be a finite field. A code
C ⊂ F

n is said to be locally recoverable with t recovering
sets (an LRC(t) code) if for every i ∈ {1, . . . , n} there exist
disjoint subsets Ai, j ⊂ [n]\i, j = 1, . . . , t of size r1, . . . , rt

respectively, such that for any codeword x ∈ C, the value of
the symbol xi is a function of each of the subsets of symbols
{xl, l ∈ Ai, j }, j = 1, . . . , t . We write (n, k, {r1, . . . , rt }) LRC
code to refer to an LRC(t) code of dimension k, length n, and
t disjoint recovering sets of size ri , i = 1, . . . , t .

We will present two methods of constructing LRC codes
with multiple recovering sets, both relying on the construction
of the previous section. The first method relies on the combi-
natorial concept of orthogonal partitions, extending the basic
construction to multiple recovering sets. The second method
uses the construction of product codes and graph codes to
combine several LRC codes into a longer multiple recovering
code. For simplicity of presentation we will restrict ourselves
to codes with two recovering sets, although both constructions
clearly apply for any number of recovering sets.

A. Algebraic LRC Codes With Multiple Recovering Sets

In this section we present a construction of LRC codes with
multiple disjoint recovering sets that develops the method of
Sect. III. As in the case for single recovering set, the construc-
tion will utilize the additive and multiplicative structure of the
field.

Let A ⊆ F, |A| = n and let A (respectively, A′) be a
partition of A into disjoint sets of size r + 1 (resp., (s + 1)).
Define two subspaces of polynomials

Fr
A = ⊕r−1

i=0 FA[x]xi and F s
A′ = ⊕s−1

i=0 FA′ [x]xi, (20)

where the notation FA[x] is defined in (13). Clearly

dim(Fr
A) = r

n

r + 1
, dim(F s

A′) = s
n

s + 1
.

For an integer m let Pm be the space of polynomials of degree
less than m, and define

Vm = Fr
A ∩ F s

A′ ∩ Pm (21)

to be the space of polynomials of degree less than m that also
belong to Fr

A and F s
A′ .

Construction 3: Let A,A1,A2 be as above. Assume that
dim(Fr

A ∩ F s
A′) ≥ k and let m be the smallest integer such

that dim(Vm) = k. Let � : F
k → Vm be an injective mapping.

For simplicity we assume that this mapping is linear, i.e., there
exists a polynomial basis g0, . . . , gk−1 of Vm such that

�(a) =
k−1∑
i=0

ai gi(x).

Denote by fa(x) = �(a) the encoding polynomial for the
vector a. Construct the code as the image of F

k under the
evaluation map similarly to (6).

Call partitions A1 and A2 orthogonal if

|X ∩ Y | ≤ 1 for all X ∈ A1, Y ∈ A2.

If the partitions A1 and A2 are orthogonal, then every symbol
of the code constructed above has two disjoint recovering sets
of size r and s, respectively.

TAMO AND BARG: FAMILY OF OPTIMAL LRC CODES 4669

Theorem 4.1: Assume that the partitions in Construction 3
are orthogonal. Then this construction gives an (n, k, {r, s})
LRC code C with distance at least n − m + 1.

Proof: The claim about the distance is obvious from the
construction (it applies even if the mapping � is nonlinear).
The local recoverability claim is proved as follows. Since the
encoding polynomial fa is in Fr

A, there exist r polynomials
f0, . . . , fr−1 in FA[x] such that

fa(x) =
r−1∑
i=0

fi (x)xi .

Now we can refer to Theorem 3.7. Using the arguments in
its proof, every symbol of the codeword can be recovered by
accessing the r symbols from the block of the partition A that
contains it, as well as by accessing the s symbols from the
corresponding block of the partition A′. The result follows.

In the following example we will construct an LRC(2) code
using Construction 3 and two orthogonal partitions.

Example 5: Let F = F13, A = F\{0}, and let A and
A′ be the orthogonal partitions defined by the cosets of the
multiplicative cyclic groups generated by 5 and 3, respectively.
We have

A = {{1, 5, 12, 8}, {2, 10, 11, 3}, {4, 7, 9, 6}}
A′ = {{1, 3, 9}, {2, 6, 5}, {4, 12, 10}, {7, 8, 11}}. (22)

Since |A| = 3, by Proposition 3.5, dim(FA[x]) = 3, and
similarly, dim(FA′ [x]) = 4. It is easy to check that

FA[x] = 〈1, x4, x8〉, FA′ [x] = 〈1, x3, x6, x9〉.
Moreover by (20)

Fr
A ∩ F s

A′ = 〈1, x, x2, x4, x5, x6, x8, x9, x10〉
∩〈1, x, x3, x4, x6, x7, x9, x10〉

= 〈1, x, x4, x6, x9, x10〉. (23)

Let m = 7, then

Vm = 〈1, x, x4, x6〉. (24)

We will construct a (12, 4, {2, 3}) LRC code with dis-
tance d ≥ 6. By Construction 3 and (24), for a vector
a = (a0, a1, a2, a3) ∈ F

4 the encoding polynomial is

fa(x) = a0 + a1x + a2x4 + a3x6.

This polynomial can be written as

fa(x) =
2∑

i=0

fi (x)xi ,

where f0(x) = a0 + a2x4, f1(x) = a1, f2(x) = a3x4, and

each fi ∈ FA[x]. The same polynomial can also be written as

fa(x) =
1∑

i=0

gi(x)xi

where g0(x) = a0 + a3x6, g1(x) = a1 + a2x3,

and g0, g1 ∈ FA′ [x].

Assume that one would like to recover the value of the
codeword symbol fa(1). This can be done in two ways as
follows:

(1) Use the set in the partition A that contains 1, i.e.,
{1, 5, 12, 8}, find the polynomial δ(x) of degree at
most 2 such that δ(5) = fa(5), δ(12) = fa(12)
and δ(8) = fa(8). The symbol fa(1) is found as
fa(1) = δ(1);
or

(2) Use the set {1, 3, 9} ∈ A′, which also contains 1, find
the polynomial δ1(x) of degree at most 1 such that
δ1(3) = fa(3), δ1(9) = fa(9). The symbol fa(1) is
found as fa(1) = δ1(1).

Finally, since deg fa ≤ 6 for all a ∈ Fk, we immediately
observe that d(C) ≥ 6.

As observed above, orthogonality of the partitions is a
desirable property in the context of simultaneous data recovery
by different users. In (22) we constructed orthogonal partitions
using cosets of two distinct subgroups of the field F. Of course,
not every pair of subgroups has this property. It is easy to
identify a necessary and sufficient condition for the subgroups
to generate orthogonal partitions.

Proposition 4.2: Let H and G be two subgroups of some
group, then the coset partitions H and G defined by H and G
respectively are orthogonal iff the subgroups intersect trivially,
namely

H ∩ G = 1.

If the group X is cyclic, then it is equivalent to requiring that
gcd(|H |, |G|) = 1.

Proof: Two distinct elements x, y in the group are in
the same cosets in the partitions H and G iff H x = H y
and Gx = Gy, which is equivalent to xy−1 ∈ H ∩ G and
xy−1 �= 1, and the first part follows. Now assume that the
group is cyclic (e.g. the multiplicative group of a finite field),
and let h = |H | and g = |G|. Elements x, y belong to the
same coset in the partitions H and G iff the element xy−1 is
both an h-th and g-th root of unity. This happens if and only if
the order ord(xy−1) divides both h and g, or equivalently that
ord(xy−1)| gcd(h, g). Since x �= y, the order ord(xy−1) > 1,
hence gcd(h, g) �= 1, which proves the second part.

In the context of finite fields we can use both the multiplica-
tive group (as in the above example) and the additive group
of the field to construct an LRC(t) code.

Example 6: In applications it is often useful to have codes
over a field of characteristic 2, e.g., over the field F16. We have
F

+
16

∼= F
+
4 × F

+
4 , and the two copies of F

+
4 in F16 intersect

only by the zero element, hence by Proposition 4.2 they
generate two orthogonal partitions. Using Construction 3, one
can construct an LRC code of length 16 with two disjoint
recovering sets for each symbol, each of size 3. The dimension
of the code can be any integer k ≤ 8.

Since the additive group of the field is a direct product
of smaller groups, it is easy to find subgroups that intersect
trivially, giving rise to orthogonal partitions of Fq . These
partitions can be used to construct LRC(2) codes with disjoint
recovering sets, as in the previous example.

4670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

At the same time, constructing LRC(2) codes from a multi-
plicative subgroup of Fq , q = pl requires one extra condition,
namely, that q − 1 is not a power of a prime. In this case,
we can find two subgroups of F

∗
q of coprime orders, which

give rise to orthogonal partitions of F
∗
q .

Proposition 4.3: Let Fq be a finite field such that the q − 1
is not a power of a prime. Let r, s > 1, gcd(r, s) = 1 be two
factors of q −1. Then there exists an LRC(2) code C of length
q − 1 over Fq such that every code symbol has two disjoint
recovering sets of sizes r − 1 and s − 1. The code C can be
constructed using Construction 3 based on the subgroups of
F

∗
q of orders r and s.
One sufficient condition for the existence of subgroups of

coprime orders in the multiplicative group of Fpl is that l itself
is not a power of a prime. Indeed, let l = ab, where a ≤ b
and a does not divide b. In this case both (pa − 1)|(pl − 1)
and (pb − 1)|(pl − 1). Then pl − 1 is not a power of a prime,
because otherwise (pa − 1)|(pb − 1), i.e., a|b.

Example 7: Using Construction 3 and the previous observa-
tion, one can construct an LRC(2) code of length 26−1 = 63,
in which every symbol has two disjoint recovering sets of
size 2 and 6, respectively. This is done using the orthogonal
partitions derived from the subgroups of size 3 and 7.

LRC codes with multiple disjoint recovering sets are likely
to have large minimum distance since each erased symbol can
be recovered in several ways, so the code is resilient against
many erasures. In the following statement we quantify this
argument by establishing a lower bound on the distance in
terms of the number of recovering sets for each symbol. The
next theorem applies to any class of LRC(t) codes such that
the recovering sets for the symbols form t mutually orthogonal
partitions.

Theorem 4.4: Let C be an LRC(t) code of length n, and
suppose that the recovering sets are given by mutually orthogo-
nal partitions A1, . . . ,At of [n]. Let m be the smallest positive
integer that satisfies

t f (m) ≤
(

m

2

)
, (25)

where

f (m) =
⎧⎨
⎩

m

2
, m even

m + 3

2
, m odd.

Then the distance of C is at least m.
The proof relies on the following lemma.

Lemma 4.5: Let A1, . . . ,At be t mutually orthogonal par-
titions of a finite set A, and let m be defined in (25). Then
for any B ⊂ A, |B| < m there exists a subset C in some
partition Ai , i = 1, . . . , t such that

|B ∩ C| = 1.

Proof: By definition of m, for any integer s < m

t f (s) >

(
s

2

)
. (26)

Assume toward a contradiction that the statement is false, then
for every i = 1, . . . , t and any element x ∈ B , there exists

y ∈ B such that x, y belong to the same set in the partition Ai .
For a partition Ai define the graph Gi with the elements of B
as its vertices, and draw an edge between x and y iff they
are in the same set in the partition Ai . By the assumption,
the degree of every vertex of Gi is at least one. If s = |B|
is even then there are at least s/2 edges in Gi . If s is odd,
then Gi contains at least one triangle, and so there are at least
(s − 3)/2 + 3 = (s + 3)/2 edges in it. Notice that since the
partitions are mutually orthogonal, there are no edges that are
contained in more than one graph Gi . Therefore

t f (s) ≤
t∑

i=1

|E(Gi)| = | ∪t
i=1 E(Gi)| ≤

(
s

2

)
,

which is a contradiction to (26).
Proof of Theorem 4.4: In order to prove that d(C) ≥ m we

will show that any m − 1 erased symbols in the codeword can
be recovered. Let B be the set of m − 1 erased coordinates.
By Lemma 4.5 there exists a set C in some partition Ai such
that B ∩ C = {i1}, where i1 ∈ [n] is some coordinate. Since
no other coordinates in the set C are erased, this permits us
to recover the value of the symbol in the coordinate i1 by
accessing the symbols in the set C\{i1}. This reduces the
count of erasures by 1, leaving us with the set of erasures
of cardinality m − 2. Lemma 4.5 applies to it, enabling us to
correct one more erasure, and so on.

Let us show that Theorem 4.4 can sometimes provide a
better bound on the minimum distance compared to the degree
estimate.

Example 8: Consider an (n = 12, k = 6, {r1 = 2, r2 = 3})
LRC code C over F13 obtained using Construction 3, the par-
titions in (22), and the corresponding algebras FA[x], FA′ [x].
Using (25) in Theorem 4.4 we find that the distance of C is
at least 4.

By (23) the set {1, x, x4, x6, x9, x10} forms a basis of the
space of encoding polynomials. Given a message vector a =
(a0, a1, a4, a6, a9, a10) ∈ F

6, write the encoding polynomial as

fa(x) = a0 + a1x + a4x4 + a6x6 + a9x9 + a10x10.

To find the codeword, evaluate the polynomial at all nonzero
elements of the field F13.

Assume that the value fa(2) is erased and needs to be
recovered. This can be done in two ways:

(1) Write the encoding polynomial as follows

fa(x) = (a0 + a4x4) + x(a1 + a9x8) + x2(a6x4 + a10x8)

= g0 + g1(x)x + g2(x)x2,

where g0 = a0 + a4x4, g1(x) = a1 + a9x8, g2(x) = a6x4 +
a10x8, and gi ∈ FA[x], i = 1, 2, 3. The symbol fa(2) can be
found from the values of fa(10), fa(11), fa(3).

(2) Write the encoding polynomial as follows

fa(x) = (a0 + a6x6 + a9x9) + x(a1 + a4x3 + a10x9)

= f0(x) + x f1(x),

where f0(x) = a0+a6x6+a9x9 and f1(x) = a1+a4x3+a10x9,
and f0, f1 ∈ FA′ [x]. The symbol fa(2) can be found from the
values of fa(5), fa(6).

TAMO AND BARG: FAMILY OF OPTIMAL LRC CODES 4671

Since the polynomial fa in this example can be of degree 10,
bounding the codeword weight by the degree would only give
the estimate d(C) ≥ 2.

Remark: As discussed above, an obvious solution to the
multi-recovery problem is given by repeating each symbol of
the data several times. An advantage of this is high availability
of data: Namely, a read request of a data fragment located on
an unavailable or overloaded (hot) node can be easily satisfied
by accessing the other replicas of the data. The LRC(2) code
C constructed in the above example can be a good candidate to
replace the repetition code, with almost no extra cost. Indeed,
both the (12, 6) LRC(2) code C and the (18, 6) three-fold
repetition code encode 6 information symbols, however the
encoding C entails a 100% overhead compared to a 200%
overhead in the case of repetition. The code C is resilient to
any 3 erasures while the repetition code can fail to recover
the data if all the 3 copies of the same fragment are lost. At
the same time, the code C uses subsets of sizes 2 and 3 to
calculate the value of the symbol while the repetition code
in the same situation uses two subsets of size 1. Thus, the
reduction of the overhead is attained at the expense of a small
amount of added computation.

In the final part of this section we derive a bound on the
distance of the constructed codes confining ourselves to the
basic case of the (n, k, {r, r}) code. This is accomplished by
estimating the dimension of the subspace Vm defined in (21)
and then using Theorem 4.1.

Lemma 4.6: Let A be a set of size n, and assume that A and
A′ are two orthogonal partitions of A into subsets of size r +1.
Suppose that there exist polynomials g and g′ of degree r + 1
that are constant on the blocks of A and A′, respectively. Then
the dimension of the space Vm (21) is at least m(r −1)/(r +1).

Proof: Recall the space of polynomials Fr
A defined

in (20). Let t = n/(r + 1) and note that the basis of this
subspace is given by the polynomials gi x j , i = 0, . . . , t − 1,
j = 0, . . . , r − 1. Next we argue that

Pm = (Fr
A ∩ Pm) ⊕ Span

{
x j (r+1)−1, j = 1, . . . ,

⌊ m

r + 1

⌋}
,

so

m = dim(Fr
A ∩ Pm) +

⌊ m

r + 1

⌋
.

Thus, for any integer m,

dim(Fr
A ∩ Pm) ≥ mr

r + 1

and the same bound holds if A on the previous line is replaced
with A′. Then we obtain

dim(Pm) = m

≥ dim((Fr
A ∩ Pm) + (Fr

A′ ∩ Pm))

≥ mr

r + 1
+ mr

r + 1
− dim(Fr

A ∩ Fr
A′ ∩ Pm)

(see (21)). Solving for the dimension of the subspace
Fr
A ∩ Fr

A′ ∩ Pm = Vm , we obtain the claimed estimate.
Now suppose we have an (n, k, {r, r}) LRC code designed

using Construction 3. Choosing m = � k(r+1)
r−1 � we observe that

the dimension of Vm is at least k. Therefore, from Theorem 4.1
the distance of the code satisfies the inequality

d ≥ n −
(⌈k(r + 1)

r − 1

⌉
− 1

)
= n − k −

⌈ 2k

r − 1

⌉
+ 1. (27)

Remark: While the paper was in review, a new bound
on codes with multiple recovering sets was proved in [28].
Using this result, we obtain the following inequalities for the
distance d of an (n, k, {r, r}) code:

n − k −
⌈ 2k

r − 1

⌉
+ 1 ≤ d ≤ n − k −

⌊k − 1

r

⌋
−

⌊k − 1

r2

⌋
+1.

B. LRC Product Codes

Given a set of t LRC codes, one can construct an LRC(t)
code by taking a product of the corresponding linear sub-
spaces. Again for simplicity we confine ourselves to the case
of t = 2.

Construction 4: We construct an (n, k, {r1, r2}) LRC code
with n = n1n2, k = k1k2 by combining two LRC codes with
the parameters (ni , ki , ri), i = 1, 2 obtained by Construction 2.
Suppose that the codes C1 and C2 are linear, and were
constructed using linear injective mappings �i and evaluating
sets Ai ∈ F, i = 1, 2. Define the linear mapping

� = �1 ⊗ �2 : F
k1k2 → ⊕r1−1

i=0 FA1 [x]xi ⊗ ⊕r2−1
j=0 FA2 [y]y j ,

which is the tensor product of the mappings �i . Define the
encoding polynomial for a ∈ F

k1k2 to be

fa(x, y) = �(a).

The code is the image of F
k under the evaluation map applied

on the set of pairs A1 × A2.
The following simple proposition summarizes the properties
of this construction.

Proposition 4.7: Let Ci ⊂ F
ni be an (ni , ki , ri) LRC

code with minimum distance di , i = 1, 2. Construction 4
yields an LRC(2) code with the parameters (n = n1n2,
k = k1k2, {r1, r2}) and distance d = d1d2 .

Proof: Denote by Ai = � j≥1 A(i)
j the partitions of the

evaluation sets used in constructing the codes Ci , i = 1, 2
(refer to Construction 2). Let a ∈ F

k and let the corresponding
encoding polynomial be fa(x, y). Suppose that, for some
point (x0, y0) ∈ A1 × A2 we would like to compute in two
ways the value of fa(x0, y0) by accessing r1 and r2 symbols,
respectively. Observe that the univariate polynomial fa(x, y0)
is contained in ⊕r1−1

i=0 FA1[x]xi , and therefore fa(x0, y0) can
be found from the symbols in the set { fa(α, y0), α ∈ A(1)

m \x0},
where A(1)

m ∈ A1 is the set that contains x0. Similarly
fa(x0, y0) can be recovered using the polynomial fa(x0, y)

and the symbols in the set { fa(x0, β), β ∈ A(2)
l \y0}, where

A(2)
l ∈ A2 is the set that contains y0. Hence, the symbol

fa(x0, y0) has two disjoint recovering sets of size r1, r2, and
the result follows.

For instance, taking two optimal component LRC codes C1
and C2 with the parameters (ni , ki , r), i = 1, 2 we find the
distance of their product to satisfy

d =
(

n1 − k1 −
⌈k1

r

⌉
+ 2

)(
n2 − k2 −

⌈k2

r

⌉
+ 2

)
(28)

4672 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Example 9: Let us construct an (81, 16, {2, 2}) LRC code
C ⊗ C, where C is the optimal (9, 4, 2) LRC code constructed
in Example 1. The encoding polynomial of C for a vector
a ∈ (F13)

4 is

fa(x) = a0 + a1x + a2x3 + a3x4.

Define the vector (b0, b1, b2, b3) = (0, 1, 3, 4) and note that
fa can be written as fa(x) = ∑3

i=0 ai xbi . For a vector a ∈
(F13)

16, a = (ai, j), i, j = 0, . . . , 3 the encoding polynomial
of the product code C ⊗ C is

fa(x, y) =
3∑

i, j=0

ai, j xbi yb j .

The codeword that corresponds to the message a is obtained
by evaluating fa at the points of A × A, where A =
{1, 3, 9, 2, 6, 5, 4, 12, 10}.

Assume that the symbol fa(1, 2) is erased and needs to be
recovered. We can do it in two ways:

(1) Find the polynomial δ(x), deg δ(x) ≤ 1 such that δ(3) =
fa(3, 2), δ(9) = fa(9, 2), and compute fa(1, 2) = δ(1), or

(2) Find the polynomial δ1(y), deg δ1(y) ≤ 1 such that
δ1(6) = fa(1, 6), δ1(5) = fa(1, 5), and compute f (1, 2) =
δ1(2).

We remark that product codes can be also viewed as codes
on complete bipartite graphs. Replacing the complete graph
with a general bi-regular graph, we obtain general bipartite
graph codes. A bipartite graph code is a linear code in which
the coordinates of the codeword are labeled by the edges of
the graph, and a vector is a codeword if and only if the
edges incident to every vertex satisfy a given set of linear
constraints. For instance, if this set is the same for every
vertex (and the graph is regular), we obtain a graph code in
which the local constraints are given by some fixed code C0
of length equal to the degree 	 of the graph. Having in mind
our goal of constructing LRC codes, we should take C0 to be
a single erasure-correcting code of length 	. This will give
us a code with two recovering sets for every symbol, given
by the vertices at both ends of the corresponding edge. The
advantage of this construction over product codes is that the
length 	 of the component code can be small compared to
the overall code length n. We will confine ourselves to these
brief remarks, referring the reader to the literature (see [2])
for more details on bipartite graph codes including estimates
of their parameters.

Comparing the two methods: The most fundamental para-
meter of an erasure-correcting code is the minimum distance.
To compare the two constructions, suppose that the desired
parameters of the LRC(2) code are (n, k, {r, r}) LRC codes
and use the expressions (27) and (28). For simplicity, let us
compare the constructions in terms of the rate R = k/n and
the normalized distance θ = d/n. Then for Construction 3
we obtain

θ ≥ 1 − R
r + 1

r − 1
+ O(1/n)

while for the product construction (Construction 4) we
obtain (28)

θ =
(

1 − R1
r + 1

r
+ O(1/n)

)(
1 − R2

r + 1

r
+ O(1/n)

)

Putting R1 = R2 = √
R gives the largest value on the right,

and we obtain

θ =
(

1 − √
R

r + 1

r
+ O(1/n)

)2

We observe that Construction 3 gives codes with higher
minimum distance than the product of two optimal codes if
the target code rate satisfies

R ≤
(2r(r − 1)

2r2 − 1

)2 =
(

1 − 1

r

)2(
1 + 1

2r2 + O
(1

r4

))2

≈
(

1 − 1

r

)2

(e.g., for r = 4 the condition becomes R ≤ 0.599).
At the same time, the product construction provides more

flexibility in constructing LRC codes with multiple recov-
ering sets because it gives multiple disjoint recovering sets
by design. On the other hand, Construction 3 requires con-
structing several mutually orthogonal partitions with their
corresponding good polynomials, which in many cases can
be difficult to accomplish. Moreover, the product construction
requires the field of size about

√
n, outperforming Construc-

tion 3 which relies on the field of size about n, where n is
the code length. Concluding, each of the two constructions
proposed has its advantages and disadvantages, and therefore
is likely to be more suitable than the other one in certain
applications.

V. GENERALIZATIONS OF THE MAIN CONSTRUCTION

In this section we return to the problem of LRC codes
with a single recovering set for each symbol, generalizing
the constructions of Section III in several different ways.
We begin with constructing an LRC code for arbitrary code
length, removing the assumption that n is a multiple of r + 1.
We continue with a general method of constructing LRC codes
with recovering sets of arbitrary given size, further extending
the results of Section III. One more extension that we consider
deals with constructing optimal LRC codes in which each sym-
bol is contained in a local code with large minimum distance.

A. Arbitrary Code Length

The constructions of Section III require the assumption that
n is a multiple of r + 1. To make the construction more
flexible, let us modify the definition of the codes so that
this constraint is relaxed. While the minimum distance of the
codes presented below does not always meet the Singleton-
type bound (2), we will show that for the case of linear codes
it is at most one less than the maximum possible value. The
only assumption that will be needed is that n mod (r+1) �= 1.

As before, for M ⊂ F denote by hM (x) = ∏
α∈M

(x − α)

the annihilator polynomial of the set M . In the following
construction we assume that n is not a multiple of r + 1.
For simplicity we also assume that r divides k although this

TAMO AND BARG: FAMILY OF OPTIMAL LRC CODES 4673

constraint can be easily lifted at the expense of a somewhat
more complicated notation.

Construction 5: Let F be a finite field, and let A ⊂ F be
a subset such that |A| = n, n mod(r + 1) = s �= 1. Let
m = � n

r+1� and let A = {A1, . . . , Am} be a partition of A such
that |Ai | = r + 1, 1 ≤ i ≤ m − 1 and 1 < |Am | = s < r + 1.
Let �i : F

k/r → FA[x], i = 0, . . . , r − 1 be injective
mappings. Moreover, assume that �s−1 is a mapping to the
subspace of polynomials of FA[x] that vanishes on the set
Am , i.e., the range of �s−1 is the space { f ∈ FA[x] :
f (α) = 0 for any α ∈ Am}.

Given the input information vector a = (a0, . . . , ar−1) ∈ F
k ,

where each ai is a vector of dimension k/r , define the
encoding polynomial as follows:

fa(x) =
s−1∑
i=0

�i (ai)xi +
r−1∑
i=s

�i (ai)xi−sh Am (x)

=
s−1∑
i=0

fi (x)xi +
r−1∑
i=s

fi (x)xi−sh Am (x), (29)

where �i (ai) = fi (x) ∈ FA[x]. Finally, define the code as
the image of the evaluation mapping similarly to (6).

Theorem 5.1: Construction 5 defines an (n, k, r) LRC code.
Proof: Any symbol fa(α) for α in one of the sets

A1, . . . , Am−1 can be locally recovered using the same
decoding procedure as in Construction 2. This follows
since the encoding polynomial fa(x) belongs to the space
⊕r−1

i=0 FA[x]xi , and therefore this symbol can be recovered
by accessing r symbols. The only special case is recovering
symbols in the set Am . By definition of �s−1 and (29), the
restriction of the encoding polynomial fa(x) to the set Am

is a polynomial of degree at most s − 2. Hence in order to
recover the value of fa(α) for an element α ∈ Am , we find
the polynomial δ(x) = ∑s−2

i=0 fi (α)xi from the set of s − 1
values δ(β) = fa(β), β ∈ Am\{α}. Clearly the lost symbol is
fa(α) = δ(α), and the locality property follows.

To estimate the value of the code distance consider the
following modification of Construction 5.

Construction 6: Let F be a finite field, and let A ⊂ F

be a subset such that |A| = n, n mod(r + 1) = s �= 0, 1.
Assume also that k + 1 is divisible by r (this assumption is
nonessential).

Let A be a partition of A into m subsets A1, . . . , Am

of sizes as in Construction 5. Let g(x) be a polynomial of
degree r + 1, such that its powers 1, g, . . . , gm−1 span the
algebra FA[x]. W.l.o.g. we can assume that g vanishes on the
set Am , otherwise one can take the powers of the polynomial
g(x) − g(Am) as the basis for the algebra.

Let a = (a0, . . . , ar−1) ∈ F
k be the input information

vector, such that each ai for i �= s − 1 is a vector of length
(k + 1)/r and as−1 is of length k+1

r − 1. Define the encoding
polynomial

fa(x) =
s−2∑
i=0

k+1
r −1∑
j=0

ai, j g(x) j x i +
k+1

r −1∑
j=1

as−1, j g(x) j x s−1

+
r−1∑
i=s

k+1
r −1∑
j=0

ai, j g j (x)xi−sh Am (x). (30)

The code is defined as the set of evaluations of fa(x),
a ∈ F

k .
Theorem 5.2: The code given by Construction 6 is an

(n, k, r) LRC code with minimum distance satisfying

d ≥ n − k −
⌈k

r

⌉
+ 1. (31)

Note that the designed minimum distance in (31) is at most
one less than the maximum possible value.

Proof: Note that the encoding is linear and the encoding
polynomial in (30) is of degree at most(k + 1

r
− 1

)
(r + 1) + (r − 1)

= k + 1 − r + k + 1

r
− 1 + r − 1 = k +

⌈k

r

⌉
− 1.

The bound (31) follows. The locality property follows sim-
ilarly to Construction 5. Indeed, if the symbol fa(α) for
α ∈ Am is to be recovered, we need to find a polynomial
of degree at most s − 2 from s − 1 interpolation points.

Remark: [9, Corollary 10] shows that (n, k, r) LRC codes
whose distance meets the bound (2) do not exist whenever
r divides k and

0 < n − k(r + 1)

r
< r + 1. (32)

(There is no contradiction with Construction 1 which assumes
in addition that (r +1)|n since these two divisibility conditions
imply that the inequalities in (32) cannot be simultaneously
satisfied.) In the case that r |k and these inequalities are
satisfied, the best bound is at least one less than (2), which
implies that the codes discussed in Theorem 5.2 are optimal
for the considered values of r, k, and n.

B. LRC Codes as Redundant Residue Codes

So far in this paper we have discussed the problem of
recovering the lost symbol of the codeword by accessing a
specific subset of r other symbols. We presented a construction
of optimal LRC codes with this functionality and several of
its modifications. Of course, in order to locally recover a lost
symbol, all the r other symbols must be accessible. Having
in mind the distributed storage application, we argue that this
may not always be the case, for instance, if the symbols of the
codeword are distributed across a network, and some nodes of
the network become temporarily inaccessible. For this reason,
in this section we consider a general method of constructing
(n, k, r) LRC codes such that every symbol is contained in an
MDS local code with arbitrary parameters.

More formally, for an integer t let n1, . . . , nt and k1, . . . , kt

be two sequences of integers that satisfy

k ≤
∑

i

ki , n =
∑

i

ni and ki ≤ ni for any i.

We will construct a code such that its symbols can be
partitioned into t codes Ci , and each Ci is an (ni , ki) MDS
code. The idea of the construction in this section is similar to

4674 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

the description of Reed-Solomon codes as redundant residue
codes [14, Sec. 10.9] which relies on the Chinese Remainder
Theorem.

Chinese Remainder Theorem: Let G1(x), . . . , Gt (x) ∈ F[x]
be pairwise coprime polynomials, then for any t polynomials
M1(x), . . . , Mt (x) ∈ F[x] there exists a unique polynomial
f (x) of degree less than

∑
i deg(Gi), such that

f (x) ≡ Mi (x) mod Gi (x) for all i = 1, . . . , t .

Construction 7: Let A ⊂ F, |A| = n be a subset of points,
and let A = {A1, . . . , At } be a partition of A such that
|Ai | = ni , i = 1, . . . , t . Let � be an injective mapping

� : F
k → Fk1 [x] × · · · × Fkt [x]
a �→ (M1(x), . . . , Mt (x)),

where Fki [x] is the space of polynomials of degree less than
ki , i = 1, . . . , t . Let

Gi (x) =
∏

a∈Ai

(x − a), i = 1, . . . , t

be the annihilator polynomial of the subset Ai . Clearly the
polynomials Gi (x) are pairwise coprime.

For a message vector a ∈ F
k define the encoding polynomial

fa(x) to be the unique polynomial of degree less than n that
satisfies

fa(x) ≡ Mi (x) mod Gi (x).

Finally, the code is defined as the image of the evaluation
map (6) for the set of message vectors F

k.
Theorem 5.3: Construction 7 constructs an (n, k) LRC code

with t disjoint local codes Ci , where each Ci is an (ni , ki) MDS
code.

Proof: Since each codeword is an evaluation at n points
of a polynomial of degree less than n, the weight of each
nonzero codeword is at least one, and the code defined by the
construction is indeed an injective mapping of F

k to F
n .

Consider the set Ai , i = 1, . . . , t in the partition and note
that by the construction, there exists a polynomial h such that

fa(x) = h(x)Gi (x) + Mi (x).

This implies that f (α) = Mi (α) for any α in Ai . In other
words, the restriction of the codeword (fa(α), α ∈ A) to the
subset of locations corresponding to Ai can be viewed as an
evaluation of a polynomial of degree less than ki at ni points.
Therefore, the vectors (fa(α), α ∈ Ai) form an (ni , ki) MDS
code for all i = 1, . . . , t .

The distance of the code constructed using the method
discussed here is at least min1≤i≤t (ni − ki + 1). It is easy to
see that Construction 2 and Construction 1 are special cases
of Construction 7, where each local code is an (r + 1, r)
MDS code. Note also that Construction 7 provides significant
flexibility, allowing one to combine arbitrary local MDS codes
into an LRC code.

C. (r + ρ − 1, r) Local MDS Codes

The construction considered in this section is a special case
of the general construction of the previous section in which all
the local codes have the same parameters. More specifically,
we consider LRC codes in which the set of coordinates is
partitioned into several subsets of cardinality r + ρ − 1 in
which every local code is an (r + ρ − 1, r) MDS code,
where ρ ≥ 3. Under this definition, any symbol of the
codeword is a function of any r out of the r +ρ − 2 symbols,
increasing the chances of successful recovery. Such codes will
be called (n, k, r, ρ) LRC codes, where n is the block length
and k is the code dimension (here we confine ourselves to
the case of linear codes). Kamath et al. [12] generalized the
upper bound (2) to (n, k, r, ρ) LRC codes, showing that the
minimum distance d satisfies

d ≤ n − k + 1 −
(⌈k

r

⌉
− 1

)
(ρ − 1). (33)

As before, we will say that the LRC code is optimal if its
minimum distance attains this bound with equality.

We assume that n|(r + ρ − 1) and r |k, although the latter
constraint is again unessential. The following construction
is described for the case of linear codes, generalizing Con-
struction 1. It is also possible to extend the more general
Construction 2 to the case at hand, however we will not include
the details.

Construction 8: Let A = {A1, . . . , Am}, m = n/(r +ρ −1)
be a partition of the set A ⊂ F, |A| = n, such that |Ai | =
r + ρ − 1, 1 ≤ i ≤ m. Let g ∈ F[x] be a polynomial
of degree r + ρ − 1 that is constant on each of the sets
Ai . The polynomials 1, g, . . . , gm−1 span the algebra FA[x],
see Proposition 3.5 part (3). For an information vector a ∈ F

k

define the encoding polynomial

fa(x) =
k−1+(k

r −1)(ρ−1)∑
i=0

i mod(r+ρ−1)=0,1,...,r−1

ai g(x)
� i

r+ρ−1 �xi mod(r+ρ−1).

(34)

The code is the image of F
k under the evaluation map,

see (6).
We note that the polynomial fa(x) can be also rep-

resented in the form analogous to (4). Indeed, let a =
(a0, . . . , ar−1) ∈ F

k , where each ai = (ai,0, . . . , ai, k
r −1) is

a vector of length k/r . For i = 0, . . . , r − 1 define

fi (x) =
k
r −1∑
j=0

ai j g(x) j ,

then (34) becomes

fa(x) =
r−1∑
i=0

fi (x)xi ,

Theorem 5.4: Construction 8 yields an optimal (n, k, r, ρ)
LRC code.

Proof: Since the degree of the encoding polynomial
satisfies deg(fa) ≤ k − 1 + (� k

r � − 1)(ρ − 1) and the code is
linear, we conclude that the bound on the code distance in (33)
is achieved with equality. The local recoverability property

TAMO AND BARG: FAMILY OF OPTIMAL LRC CODES 4675

follows similarly to Theorem 3.1. Indeed, suppose that the
erased symbol is fa(α) for some α in Ai . The restriction of
fa to the set Ai is a polynomial of degree at most r −1. At the
same time, |Ai\{α}| = r + ρ − 2, so fa can be reconstructed
from any r of its values on the locations in Ai . The theorem
is proved.

VI. CONCLUSIONS

In this paper we constructed codes that meet the Singleton-
like bound (2) on the minimum distance d for any value
of the locality parameter r, 1 < r < k. The codes form a
natural generalization of Reed-Solomon codes, which takes
the locality condition into account. We also extended the main
construction to codes with multiple independent recovering
sets so that the lost symbol can be corrected by accessing
several different r -subsets of the codeword coordinates.

In regards to future research directions related to the code
family studied here, we mention correction of up to � d−1

2 �
errors with these codes using algebraic decoding algorithms,
as well as generalizations of our constructions to algebraic
geometric codes.

APPENDIX

PROOF OF THEOREM 2.1

We will use the following theorem which is a slight mod-
ification of the well-known Turán theorem on the size of the
maximal independent set in a graph.

Theorem A.1: Let G be a directed graph on n vertices, then
there exists an induced directed acyclic subgraph of G on at
least

n

1 + 1
n

∑
i dout

i

vertices, where dout
i is the outgoing degree of vertex i .

Proof. We follow the proof of the undirected version of this
result that appears in [1, pp. 95–96]. Choose uniformly a total
ordering π on the set of vertices [n], and let U ⊆ [n] be a
subset of vertices defined as follows: A vertex i belongs to
U iff for any outgoing edge from i to some vertex j , π(i) <
π(j). The induced subgraph of G on U is a directed acyclic
graph, since if i1, . . . , im is a cycle where i j ∈ U then

π(i1) < π(i2) < ... < π(im) < π(i1),

and we get a contradiction. Let X = |U | be the size of U ,
and let Xi be the indicator random variable for i ∈ U . Clearly
X = ∑

i Xi and for each i

E(Xi) = P(i ∈ U) = dout
i !

(1 + dout
i)! = 1

1 + dout
i

.

Using the inequality between the arithmetic mean and the
harmonic mean, we obtain

E(X) =
∑

i

1

1 + dout
i

≥ n

1 +
∑

i dout
i

n

.

Therefore there exists a specific ordering π with

|U | ≥ n

1 +
∑

i dout
i

n

.

Proof of Theorem 2.1: Consider a directed graph G whose
vertex set is the set of coordinates [n] of C, and there is a
directed edge from i to j iff j ∈ Ii . Since the code has locality
r , the outgoing degree of each vertex is at most r , and by
Theorem A.1 G contains an induced directed acyclic subgraph
GU on the set of vertices U , where

|U | ≥ n

r + 1
. (35)

Let i be a coordinate in GU without outgoing edges, then
it is clear that coordinate i is a function of the coordinates
[n]\U . Continuing with this argument, consider the induced
subgraph of G on U\i . Clearly it is also a directed acyclic
graph. Let i ′ be another coordinate without outgoing edges
in GU\i , which means that coordinate i ′ is a function of the
coordinates [n]\U . Iterating this argument, we conclude that
any coordinate i ∈ U is a function of the coordinates [n]\U .

This means that we have found at least |U | ≥ n
r+1 coordi-

nates that are redundant. Therefore, the number of information
coordinates k is at most rn/(r + 1), as claimed.

For the second part note that the minimum distance of the
code can be defined as follows:

d = n − max
I⊆[n]{|I | : |CI | < qk}. (36)

Consider a subset U ′ ⊆ U of size |U ′| = � k−1
r �. Such a subset

exists because using (1) and (35) we have

|U | ≥ n

r + 1
≥ k

r
≥

⌊k − 1

r

⌋
.

Clearly the induced subgraph of G on U ′ is a directed acyclic
graph. Let N be the set of coordinates in [n]\U ′ that have at
least one incoming edge from a coordinate in U ′. Note that

|N | ≤ r |U ′| = r
⌊k − 1

r

⌋
≤ k − 1,

and that each coordinate in U ′ is a function of the coordinates
in N . Let N ′ be a (k − 1)-element set formed by the union
of N with arbitrary k − 1 − |N | coordinates from the set
[n]\(N ∪ N ′). Hence

|CN ′∪U ′ | = |CN ′ | ≤ qk−1,

and |N ′ ∪ U ′| = k − 1 + � k−1
r �. Then we conclude that

max
I⊆[n]{|I | : |CI | < qk} ≥ k − 1 +

⌊
k − 1

r

⌋
,

and, using (36),

d ≤ n −
(

k − 1 +
⌊

k − 1

r

⌋)
= n − k −

⌈
k

r

⌉
+ 2.

REFERENCES

[1] N. Alon and J. Spencer, The Probabilistic Method. Hoboken, NJ, USA:
Wiley, 2008.

[2] A. Barg and G. Zémor, “Concatenated codes: Serial and parallel,” IEEE
Trans. Inf. Theory, vol. 51, no. 5, pp. 1625–1634, May 2005.

[3] M. Blaum, J. L. Hafner, and S. Hetzler, “Partial-MDS codes and their
application to RAID type of architectures,” IEEE Trans. Inf. Theory,
vol. 59, no. 7, pp. 4510–4519, Jul. 2013.

4676 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

[4] V. Cadambe and A. Mazumdar, “An upper bound on the size of locally
recoverable codes,” in Proc. IEEE Symp. Netw. Coding, Jun. 2013,
pp. 1–5.

[5] V. R. Cadambe, C. Huang, H. Maleki and K. Ramchandran, “Asymptotic
interference alignment for optimal repair of MDS codes in distributed
storage,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 2974–2987,
May 2013.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[7] M. Forbes and S. Yekhanin, “On the locality of codeword symbols in
non-linear codes,” arXiv:1303:3921.

[8] P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin, “Explicit maximally
recoverable codes with locality,” arxiv:1307.3150.

[9] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925–6934, Nov. 2012.

[10] J. Han and L. A. Lastras-Montano, “Reliable memories with subline
accesses,” in Proc. IEEE ISIT, Jun. 2007, pp. 2531–2535.

[11] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,” in
Proc. 6th IEEE Int. Symp. NCA, Jul. 2007, pp. 79–86.

[12] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with
local regeneration,” in Proc. IEEE Int. Symp. Inform. Theory, Istanbul,
Turkey, Jul. 2013, pp. 1606–1610.

[13] O. Khan, R. Burns, J. Plank, and C. Huang, “In search of I/O-optimal
recovery from disk failures,” in Proc. 3rd Workshop Hot Topics Storage
File Syst., Jun. 2011.

[14] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1991.

[15] A. Mazumdar, V. Chandar, and G. W. Wornell, “Update efficiency and
local repairability limits for capacity-achieving codes,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 976–988, May 2014.

[16] F. Oggier and A. Datta, “Self-repairing homomorphic codes for
distributed storage systems,” in Proc. IEEE INFOCOM, Apr. 2011,
pp. 1215–1223.

[17] L. Pamies-Juarez, H. D. L. Hollmann, and F. Oggier, “Locally repairable
codes with multiple repair alternatives,” in Proc. IEEE ISIT, Istanbul,
Turkey, Jul. 2013, pp. 892–896.

[18] D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe, “Repair
optimal erasure codes through hadamard designs,” in Proc. 49th Annu.
Allerton Conf. Commun., Control, Comput., Sep. 2011, pp. 1382–1389.

[19] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li,
“Simple regenerating codes: Network coding for cloud storage,” in Proc.
IEEE INFOCOM, Mar. 2012, pp. 2801–2805.

[20] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” in
Proc. IEEE ISIT, Jul. 2012, pp. 2771–2775.

[21] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal
linear codes with a local-error-correction property,” in Proc. IEEE ISIT,
Jul. 2012, pp. 2776–2780.

[22] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a
product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8,
pp. 5227–5239, Aug. 2011.

[23] K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,” in
Proc. IEEE ISIT, Jul. 2013, pp. 331–335.

[24] N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath,
“Optimal locally repairable codes via rank-metric codes,” in Proc. IEEE
ISIT, Jul. 2013, pp. 1819–1823.

[25] C. Suh and K. Ramchandran, “Exact-repair MDS code construction
using interference alignment,” IEEE Trans. Inf. Theory, vol. 57, no. 3,
pp. 1425–1442, Mar. 2011.

[26] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally
repairable codes and connections to matroid theory,” in Proc. IEEE ISIT,
Jul. 2013, pp. 1814–1818.

[27] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes
with optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3,
pp. 1597–1616, Mar. 2013.

[28] I. Tamo and A. Barg, “Bounds on locally recoverable codes with multiple
recovering sets,” in Proc. IEEE ISIT, Honolulu, Hawaii, Jul. 2014.

Itzhak Tamo was born in Israel in 1981. He received a B.A. from the
Mathematics Department, B.Sc. and Ph.D. from the Electrical and Computer
Engineering Department, at Ben-Gurion University, Israel. His research inter-
ests include: Storage systems and devices, coding theory, computer systems
design, and fault tolerance.

Alexander Barg received his Ph.D. degree in Electrical Engineering from
the Institute for Information Transmission Problems of the Russian Academy
of Sciences, Moscow, Russia. His research interests include coding and
information theory, signal processing, and algebraic combinatorics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

